Artificial neural networks applied for solidified soils data prediction: a bibliometric and systematic review

Author:

Pacheco Vinicius Luiz,Bragagnolo Lucimara,Thomé Antonio

Abstract

Purpose The purpose of this article is to analyze the state-of-the art in a systematic way, identifying the main research groups and their related topics. The types of studies found are fundamental for understanding the application of artificial neural networks (ANNs) in cemented soils and the potential for using the technique, as well as the feasibility of extrapolation to new geotechnical or civil and environmental engineering segments. Design/methodology/approach This work is characterized as being bibliometric and systematic research of an exploratory perspective of state-of-the-art. It also persuades the qualitative and quantitative data analysis of cemented soil improvement, biocemented or microbially induced calcite precipitation (MICP) soil improvement by prediction/modeling by ANN. This study sought to compile and study the state of the art of the topic which possibilities to have a critical view about the theme. To do so, two main databases were analyzed: Scopus and Web of Science. Systematic review techniques, as well as bibliometric indicators, were implemented. Findings This paper connected the network between the achievements of the researches and illustrated the main application of ANNs in soil improvement prediction, specifically on cemented-based soils and biocemented soils (e.g. MICP technique). Also, as a bibliometric and systematic review, this work could achieve the key points in the absence of researches involving soil-ANN, and it provided the understanding of the lack of exploratory studies to be approached in the near future. Research limitations/implications Because of the research topic the article suggested other applications of ANNs in geotechnical engineering, such as other tests not related to geomechanical resistance such as unconfined compression test test and triaxial test. Practical implications This article systematically and critically presents some interesting points in the direction of future research, such as the non-approach to the use of ANNs in biocementation processes, such as MICP. Social implications Regarding the social environment, the paper brings approaches on methods that somehow mitigate the computational use, or elements necessary for geotechnical improvement of the soil, thereby optimizing the same consequently. Originality/value Neural networks have been studied for a long time in engineering, but the current computational power has increased the implementation for several engineering applications. Besides that, soil cementation is a widespread technique and its prediction modes often require high computational strength, such parameters can be mitigated with the use of ANNs, because artificial intelligence seeks learning from the implementation of the data set, reducing computational cost and increasing accuracy.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3