Joint maintenance planning and production scheduling optimization model for green environment

Author:

Attia Ahmed M.ORCID,Alatwi Ahmad O.ORCID,Al Hanbali Ahmad,Alsawafy Omar G.ORCID

Abstract

PurposeThis research integrates maintenance planning and production scheduling from a green perspective to reduce the carbon footprint.Design/methodology/approachA mixed-integer nonlinear programming (MINLP) model is developed to study the relation between production makespan, energy consumption, maintenance actions and footprint, i.e. service level and sustainability measures. The speed scaling technique is used to control energy consumption, the capping policy is used to control CO2 footprint and preventive maintenance (PM) is used to keep the machine working in healthy conditions.FindingsIt was found that ignoring maintenance activities increases the schedule makespan by more than 21.80%, the total maintenance time required to keep the machine healthy by up to 75.33% and the CO2 footprint by 15%.Research limitations/implicationsThe proposed optimization model can simultaneously be used for maintenance planning, job scheduling and footprint minimization. Furthermore, it can be extended to consider other maintenance activities and production configurations, e.g. flow shop or job shop scheduling.Practical implicationsMaintenance planning, production scheduling and greenhouse gas (GHG) emissions are intertwined in the industry. The proposed model enhances the performance of the maintenance and production systems. Furthermore, it shows the value of conducting maintenance activities on the machine's availability and CO2 footprint.Originality/valueThis work contributes to the literature by combining maintenance planning, single-machine scheduling and environmental aspects in an integrated MINLP model. In addition, the model considers several practical features, such as machine-aging rate, speed scaling technique to control emissions, minimal repair (MR) and PM.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference67 articles.

1. Adam Wierman, Andrew, L.L.H. and Lin, M. (2012), “Speed scaling: an algorithmic perspective”, in Handbook of Energy-Aware and Green Computing, Chapman and Hall/CRC, Vol. 1.

2. Operation and maintenance optimization for manufacturing systems with energy management;Energies,2022

3. An energy-efficient collaborative strategy of maintenance planning and production scheduling for serial-parallel systems under time-of-use tariffs;Applied Energy,2023

4. A bi-objective heuristic approach for green identical parallel machine scheduling;European Journal of Operational Research,2021

5. Research of an integrated decision model for production scheduling and maintenance planning with economic objective;Computers and Industrial Engineering,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3