Study on an innovative self-inductance tension eddy current sensor based on the inverse magnetostrictive effect

Author:

Xiu Chengzhu,Ren Liang,Li Hongnan,Jia Ziguang

Abstract

Purpose Magnetic permeability variations of ferromagnetic materials under elastic stress offer the potential to monitor tension based on the inverse magnetostrictive effect. The purpose of this paper is to propose an innovative self-inductance tension eddy current sensor to detect tension. Design/methodology/approach The effectiveness of conventional elasto-magnetic (EM) sensor is limited during signal detection, due to its complex sensor structure, which includes excitation and induction coils. In this paper, a novel self-inductance tension eddy current sensor using a single coil is presented. Findings The output signal was analyzed through oscilloscope in the frequency domain and via self-developed data logger in the time domain. Experimental results show the existence of a linear relationship between voltage across the sensor and tension. The sensor sensitivity is dependent on operating conditions, such as current and frequency of the input signal. Practical implications The self-inductance sensor has great potential for replacing conventional EM sensor due to its low cost, simple structure, high precision and good repeatability in tension detection. Originality/value A spilt sleeve structure provides a higher permeability path to magnetic field lines than a non-sleeve structure, thus reducing the loss of magnetic field. The self-developed data logger improves sensitivity and signal-to-noise ratio of sensor. The novel sensor, as a replacement of the EM sensor, can easily and accurately monitor the tension force.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference25 articles.

1. Condition monitoring and rating of bridge components in a rail or road network by using SHM systems within SRP;Structural Monitoring and Maintenance,2015

2. A new magneto-elastic stress/corrosion sensor for cables in cable-stayed bridges using measurement of anhysteretic curve,2000

3. Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel structures in railway infrastructures;Applied Physics & Engineering,2011

4. Development of Elasto-Magneto-Electric (EME) sensor for in-service cable force monitoring;International Journal of Structural Stability and Dynamics,2015

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3