Comfortable textile-based electrode for wearable electrocardiogram

Author:

Haghdoost Fatemeh,Mottaghitalab Vahid,Haghi Akbar Khodaparast

Abstract

Purpose – The purpose of the current study is to explore the potential possibility of acceleration in recognition, remedial process of heart disease and continuous electrocardiogram (ECG) signal acquisition. The textile-based ECG electrode is prepared by inkjet printing of activator followed by electroless plating of nickel (Ni) particle. Design/methodology/approach – The electrical resistance shows a range of around 0.1 Ω/sq, which sounds quite proper for ECG signal acquisition, as the potential difference according to heart activity on skin surface is in milivolt range. Surface modifications of Ni–phosphorus (P)-plated polyester fiber were studied by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffractionmethods. The quality of the acquired signal from printed square-shaped sensors in two sizes with areas of 9 and 16 cm2 compared with the standard Ag/Agcl electrode using commercial ECG with the patient in the sitting position. Findings – Comparison of these data led to the consideration of small fabric sensor for better performance and the least disturbance regarding homogeneity and attenuation in electric field scattering. Using these types of sensors in textile surface because of flexibility will provide more freedom of action to the user. Wearable ECG can be applied to solve the problems of the aging population, increasing demand for health services and lack of medical expert. Originality/value – In the present research, a convenient, inexpensive and reproducible method for the patterning of Ni features on commercial polyester fabric was investigated. Printed designs with high electrical conductivity can be used as a cardiac receiving signals’ sensor.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3