How to identify influential content: Predicting retweets in online financial community

Author:

He DandanORCID,Yao Zhong,Zhao Futao,Wang YueORCID

Abstract

PurposeRetail investors are prone to be affected by information dissemination in social media with the rapid development of Web 2.0. The purpose of this study is to recognize the factors that may impact users' retweet behavior, namely information dissemination in the online financial community, through machine learning techniques.Design/methodology/approachThis paper crawled data from the Chinese online financial community (Xueqiu.com) and extracted author-related, content-related, situation-related, stock-related and stock market-related features from the dataset. The best information dissemination prediction model based on these features was determined by evaluating five classifiers with various performance metrics, and the predictability of different feature groups was tested.FindingsFive prevalent classifiers were evaluated with various performance metrics and the random forest classifier was proven to be the best retweet prediction model in the authors’ experiments. Moreover, the predictability of author-related, content-related and market-related features was illustrated to be relatively better than that of the other two feature groups. Several particularly important features, such as the author's followers and the rise and fall of the stock index, were recognized in this paper at last.Originality/valueThis study contributes to in-depth research on information dissemination in the financial domain. The findings of this study have important practical implications for government regulators to supervise public opinion in the financial market.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3