A document expansion framework for tag-based image retrieval

Author:

Lu Wei,Ding HengORCID,Jiang Jiepu

Abstract

Purpose The purpose of this paper is to utilize document expansion techniques for improving image representation and retrieval. This paper proposes a concise framework for tag-based image retrieval (TBIR). Design/methodology/approach The proposed approach includes three core components: a strategy of selecting expansion (similar) images from the whole corpus (e.g. cluster-based or nearest neighbor-based); a technique for assessing image similarity, which is adopted for selecting expansion images (text, image, or mixed); and a model for matching the expanded image representation with the search query (merging or separate). Findings The results show that applying the proposed method yields significant improvements in effectiveness, and the method obtains better performance on the top of the rank and makes a great improvement on some topics with zero score in baseline. Moreover, nearest neighbor-based expansion strategy outperforms the cluster-based expansion strategy, and using image features for selecting expansion images is better than using text features in most cases, and the separate method for calculating the augmented probability P(q|RD) is able to erase the negative influences of error images in RD. Research limitations/implications Despite these methods only outperform on the top of the rank instead of the entire rank list, TBIR on mobile platforms still can benefit from this approach. Originality/value Unlike former studies addressing the sparsity, vocabulary mismatch, and tag relatedness in TBIR individually, the approach proposed by this paper addresses all these issues with a single document expansion framework. It is a comprehensive investigation of document expansion techniques in TBIR.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference50 articles.

1. Optimizing web search using social annotations,2007

2. Tag data and personalized information retrieval,2008

3. Tag-based web photo retrieval improved by batch mode re-tagging,2010

4. NUS-WIDE: a real-world web image database from National University of Singapore,2009

5. Hashtag retrieval in a microblogging environment,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CAPTCHA for crowdsourced image annotation: directions and efficiency analysis;Aslib Journal of Information Management;2022-01-04

2. User adoption of a hybrid social tagging approach in an online knowledge community;Aslib Journal of Information Management;2019-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3