A demand forecasting model based on the improved Bass model for fast fashion clothing

Author:

Zhou Xiaoxi,Meng Jianfei,Wang Guosheng,Xiaoxuan Qin

Abstract

PurposeThis paper examines the problem of lack of historical data and inadequate consideration of factors influencing demand in the forecasting of demand for fast fashion clothing and proposes an improved Bass model for the forecasting of such a demand and the demand for new clothing products.Design/methodology/approachFrom the perspective of how to solve the lack of data and improve the precision of the clothing demand forecast, this paper studies the measurement of clothing similarity and the addition of demand impact factors. Using the fuzzy clustering–rough set method, the degree of resemblance of clothing is determined, which provides a basis for the scientific utilisation of historical data of similar clothing to forecast the demand for new clothing. Besides, combining the influence of consumer preferences and seasonality on demand forecasting, an improved Bass model for a fast fashion clothing demand forecast is proposed. Finally, with a forecasting example of demand for clothing, this study also tests the validity of the method.FindingsThe objective measurement method of clothing similarity in this paper solves the problem of the difficult forecasting of demand for fast fashion clothing due to a lack of sales data at the preliminary stage of the clothing launch. The improved Bass model combines, comprehensively, consumer preferences and seasonality and enhances the forecast precision of demand for fast fashion clothing.Originality/valueThe paper puts forward a scientific, quantitative method for the forecasting of new clothing products using historical sales data of similar clothing, thus solving the problem of lack of sales data of the fashion.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

Reference31 articles.

1. Artificial neural nets and BCL;Kybernetes,2005

2. Fashion retail forecasting by evolutionary neural networks;International Journal of Production Economics,2008

3. Exponential smoothing based on L-estimation;Kybernetika,2015

4. Designing a decision-support system for new product sales forecasting;Expert Systems with Applications,2010

5. Optimal pricing and stocking decisions for newsvendor problem with value-at-risk consideration;IEEE Transactions on Systems, Man and Cybernetics: Part A,2010

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3