Rethinking reverse logistics: role of additive manufacturing technology in metal remanufacturing

Author:

Strong Danielle,Kay Michael,Wakefield Thomas,Sirichakwal Issariya,Conner Brett,Manogharan Guha

Abstract

PurposeAlthough the adoption of metal additive manufacturing (AM) for production has continuously grown, in-house access to production grade metal AM systems for small and medium enterprises (SMEs) is a major challenge due to costs of acquiring metal AM systems, specifically powder bed fusion AM. On the other hand, AM technology in directed energy deposition (DED) has been evolving in both: processing capabilities and adaptable configuration for integration within existing traditional machines that are available in most SME manufacturing facilities, e.g. computer numerical control (CNC) machining centers. Integrating DED with conventional processes such as machining and grinding into Hybrid AM is well suited for remanufacturing of metal parts. The paper aims to discuss these issues.Design/methodology/approachClassical facility location models are employed to understand the effects of SMEs adopting DED systems to offer remanufacturing services. This study identifies strategically located counties in the USA to advance hybrid AM for reverse logistics using North American Industry Classification System (NAICS) data on geographical data, demand, fixed and transportation costs. A case study is also implemented to explore its implications on remanufacturing of high-value parts on the reverse logistics supply chain using an aerospace part and NAICS data on aircraft maintenance, repair and overhaul facilities.FindingsThe results identify the candidate counties, their allocations, allocated demand and total costs. Offering AM remanufacturing services to traditional manufacturers decreases costs for SMEs in the supply chain by minimizing expensive new part replacement. The hubs also benefit from hybrid AM to repair their own parts and tools.Originality/valueThis research provides a unique analysis on reverse logistics through hybrid AM focused on remanufacturing rather than manufacturing. Facility location using real data is used to obtain results and offers insights into integrating AM for often overlooked aspect of remanufacturing. The study shows that SMEs can participate in the evolving AM economy through remanufacturing services using significantly lower investment costs.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Control and Systems Engineering,Software

Reference55 articles.

1. Appleton, R.W. (2014), “Additive manufacturing overview for the United States Marine Corps”, technical report, RW Appleton and Company, Sterling Heights, MI.

2. Baumers, M. (2012), “Economic aspects of additive manufacturing: benefits, costs and energy consumption”, doctoral dissertation, Loughborough University, Leicestershire.

3. A spatial multivariate count model for firm location decisions;Journal of Regional Science,2014

4. Caterpillar (2015), “Caterpillar invests $6.4 million to enhance machining capabilities of its Reman facility”, available at: www.remancouncil.org/files/jk59pG/Shrewsbury-Investment-Press-Release_111014.pdf (accessed September 7, 2017).

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3