Evaluation of postural-assist exoskeleton for manual material handling

Author:

Ogunseiju OmobolanleORCID,Olayiwola Johnson,Akanmu Abiola,Olatunji Oluwole AlfredORCID

Abstract

PurposeWork-related musculoskeletal disorders constitute a severe problem in the construction industry. Workers' lower backs are often affected by heavy or repetitive lifting and prolonged awkward postures. Exoskeletal interventions are effective for tasks involving manual lifting and repetitive movements. This study aims to examine the potential of a postural-assist exoskeleton (a passive exoskeleton) for manual material handling tasks.Design/methodology/approachFrom an experimental observation of participants, the effects of postural-assist exoskeleton on tasks and workers were measured. Associated benefits of the exoskeleton were assessed through task performance, range of motion and discomfort.FindingsFindings suggest that the exoskeleton influenced discomfort significantly, however range of motion decreased with lifting tasks. The reduced back flexion and increased hip flexion were also indicatives of the participants' responsiveness to the feedback from the exoskeleton. In addition, task completion time increased by 20%, and participants' back pain did not reduce.Research limitations/implicationsThe work tasks were performed in a controlled laboratory environment and only wearable inertia measurement units (IMUs) were used to assess the risk exposures of the body parts.Practical implicationsThis study opens a practical pathway to human-exoskeleton integration, artificial regeneration or enablement of impaired workforce and a window toward a new order of productivity scaling. Results from this study provide preliminary insights to designers and innovators on the influence of postural assist exoskeleton on construction work. Project stakeholders can be informed of the suitability of the postural assist exoskeletons for manual material handling tasks.Originality/valueLittle has been reported on the benefits and impact of exoskeletons on tasks' physical demands and construction workers' performance. This study adds value to the existing literature, in particular by providing insights into the effectiveness and consequences of the postural-assist exoskeleton for manual material handling tasks.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3