An artificial intelligent manufacturing process for high-quality low-cost production

Author:

Hassan Noha M.ORCID,Hamdan Ameera,Shahin Farah,Abdelmaksoud Rowaida,Bitar Thurya

Abstract

PurposeTo avoid the high cost of poor quality (COPQ), there is a constant need for minimizing the formation of defects during manufacturing through defect detection and process parameters optimization. This research aims to develop, design and test a smart system that detects defects, categorizes them and uses this knowledge to enhance the quality of subsequent parts.Design/methodology/approachThe proposed system integrates data collected from the deep learning module with the machine learning module to develop and improve two regression models. One determines if set process parameters would yield a defective product while the second model optimizes them. The deep learning model utilizes final product images to categorize the part as defective or not and determines the type of defect based on image analysis. The developed framework of the system was applied to the forging process to determine its feasibility during actual manufacturing.FindingsResults reveal that implementation of such a smart process would lead to significant contributions in enhancing manufacturing processes through higher production rates of acceptable products and lower scrap rates or rework. The role of machine learning is evident due to numerous benefits which include improving the accuracy of the regression model prediction. This artificial intelligent system enhances itself by learning which process parameters could lead to a defective product and uses this knowledge to adjust the process parameters accordingly overriding any manual setting.Research limitations/implicationsThe proposed system was applied only to the forging process but could be extended to other manufacturing processes.Originality/valueThis paper studies how an artificial intelligent (AI) system can be developed and used to enhance the yield of good products.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3