Abstract
Purpose
Measurement uncertainty is present in all measurement processes in the field of production engineering. However, this uncertainty should be minimized to avoid erroneous decisions. Present methods to determine the measurement uncertainty are either only applicable to certain processes and do not lead to valid results in general or require a high effort in their application. To optimize the costs and benefits of the measurement uncertainty determination, a method has to be developed which is valid in general and easy to apply. The paper aims to discuss these issues.
Design/methodology/approach
This paper presents a new technique for determining the measurement uncertainty of complex measurement processes. The approximation capability of artificial neural networks with one hidden layer is proven for continuous functions and represents the basis for a method for determining a measurement model for continuous measurement values.
Findings
As this method does not require any previous knowledge or expertise, it is easy to apply to any measurement process with a continuous output. Using the model equation for the measurement values obtained by the neural network, the measurement uncertainty can be derived using common methods, like the Guide to the expression of uncertainty in measurement. Moreover, a method for evaluating the model performance is presented. By comparing measured values with the output of the neural network, a range in which the model is valid can be established. Combining the evaluation process with the modelling itself, the model can be improved with no further effort.
Originality/value
The developed method simplifies the design of neural networks in general and the modelling for the determination of measurement uncertainty in particular.
Subject
Strategy and Management,General Business, Management and Accounting
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献