Detecting depression and its severity based on social media digital cues

Author:

Deng ShashaORCID,Cheng Xuan,Hu RongORCID

Abstract

PurposeAs convenience and anonymity, people with mental illness are increasingly willing to communicate and share information through social media platforms to receive emotional and spiritual support. The purpose of this paper is to identify the degree of depression based on people's behavioral patterns and discussion content on the Internet.Design/methodology/approachBased on the previous studies on depression, the severity of depression is divided into four categories: no significant depressive symptoms, mild MDD, moderate MDD and severe MDD, and defined each of them. Next, in order to automatically identify the severity, the authors proposed social media digital cues to identify the severity of depression, which include textual lexical features, depressive language features and social behavioral features. Finally, the authors evaluate a system that is developed based on social media digital cues in the experiment using social media data.FindingsThe social media digital cues including textual lexical features, depressive language features and social behavioral features (F1, F2 and F3) is the relatively best one to classify four different levels of depression.Originality/valueThis paper innovatively proposes a social media data-based framework (SMDF) to identify and predict different degrees of depression through social media digital cues and evaluates the accuracy of the detection through social media data, providing useful attempts for the identification and intervention of depression.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3