An empirical study on life cycle assessment of double-glazed aluminium-clad timber windows

Author:

M. Asif

Abstract

Purpose Life cycle assessment (LCA) is a useful tool to determine the environmental performance of materials and products. The purpose of this paper is to undertake the LCA of double-glazed aluminium-clad timber windows in order to determine their environmental performance. Design/methodology/approach The scope of the LCA study covers the production and the use of windows over a 30-year life span. The LCA exercise has been carried out by auditing the materials and processes involved in the making of the windows. Windows production facilities were visited to investigate the respective quantities and embodied energy of the major constituting materials, i.e. timber, aluminium, glass, infill gases and auxiliary components. The main processes involved, i.e. powder coating of aluminium cladding profiles, glazing unit production and window assembly, were also examined. SimaPro software was used to calculate the environmental impacts associated with the windows for three types of glazing infills: Argon (Ar), Krypton (Kr) and Xenon (Xe). Findings Embodied energy of a standard sized (1.2 m×1.2 m) double-glazed aluminium-clad timber window is found to be 899, 1,402 and 5,400 MJ for Argon (Ar), Krypton (Kr) and Xenon (Xe) infill gases, respectively. It is also found that an Argon-filled window can lose 95,130 kWh of energy resulting into over 37,000 kg of CO2 emissions. Originality/value Besides carrying value for research community, the findings of this study can help the building and construction industry adopt windows that are energy-efficient and environmentally less burdensome. It can also help the concerned legislative bodied.

Publisher

Emerald

Subject

Building and Construction,Civil and Structural Engineering

Reference53 articles.

1. Life cycle assessment of four multi-family buildings;International Journal of Low Energy and Sustainable Buildings,2001

2. Alrashed, F. and Asif, M. (2015), “Climatic classifications of Saudi Arabia for building energy modelling”, Energy Procedia, Elsevier, Vol. 75, pp. 1425-1430, doi: 10.1016/J.EGYPRO.2015.07.245.

3. Amos, J. (2016), “Economic losses from natural disasters counted”, BBC, 18 April, available at: www.bbc.com/news/science-environment-36078527 (accessed 10 March 2019).

4. Life cycle analysis in the construction sector: guiding the optimization of conventional Italian buildings;Energy and Buildings,2013

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3