Queue-based features for dynamic waiting time prediction in emergency department

Author:

Benevento Elisabetta,Aloini Davide,Squicciarini Nunzia,Dulmin Riccardo,Mininno Valeria

Abstract

Purpose The purpose of this study is twofold: exploring new queue-based variables enabled by process mining and evaluating their impact on the accuracy of waiting time prediction. Such queue-based predictors that capture the current state of the emergency department (ED) may lead to a significant improvement in the accuracy of the prediction models. Design/methodology/approach Alongside the traditional variables influencing ED waiting time, the authors developed new queue-based predictors exploiting process mining. Process mining techniques allowed the authors to discover the actual patient-flow and derive information about the crowding level of the activities. The proposed predictors were evaluated using linear and nonlinear learning techniques. The authors used real data from an ED. Findings As expected, the main results show that integrating the set of predictors with queue-based variables significantly improves the accuracy of waiting time prediction. Specifically, mean square error values were reduced by about 22 and 23 per cent by applying linear and nonlinear learning techniques, respectively. Practical implications Accurate estimates of waiting time can enable the ED systems to prevent overcrowding e.g. improving the routing of patients in EDs and managing more efficiently the resources. Providing accurate waiting time information also can lead to decreased patients’ dissatisfaction and elopement. Originality/value The novelty of the study relies on the attempt to derive queue-based variables reporting the crowding level of the activities within the ED through process mining techniques. Such information is often unavailable or particularly difficult to extract automatically, due to the characteristics of ED processes.

Publisher

Emerald

Subject

Organizational Behavior and Human Resource Management,General Business, Management and Accounting

Reference52 articles.

1. ACEP, American College of Emergency Physicians (2016), “Emergency department crowding: high impact solutions”, available at: www.acep.org/globalassets/sites/acep/media/crowding (accessed 22 November 2018).

2. Comparison of emergency department crowding scores: a discrete-event simulation approach;Health Care Management Science,2018

3. ‘We will be right with you’: managing customer expectations with vague promises and cheap talk;Operations Research,2011

4. Accurate emergency department wait time prediction;Manufacturing & Service Operations Management,2015

5. Emergency department crowding: factors influencing flow;Western Journal of Emergency Medicine,2010

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3