Abstract
PurposeIn order to improve the robustness of bare-steel and composite structures in fire, a novel axially and rotationally ductile connection has been proposed in this paper.Design/methodology/approachThe component-based models of the bare-steel ductile connection and composite ductile connection have been proposed and incorporated into the software Vulcan to facilitate global frame analysis for performance-based structural fire engineering design. These component-based models are validated against detailed Abaqus FE models and experiments. A series of 2-D bare-steel frame models and 3-D composite frame models with ductile connections, idealised rigid and pinned connections, have been created using Vulcan to compare the fire performance of ductile connection with other connection types in bare-steel and composite structures.FindingsThe comparison results show that the proposed ductile connection can provide excellent ductility to accommodate the axial deformation of connected beam under fire conditions, thus reducing the axial forces generated in the connection and potentially preventing the premature brittle failure of the connection.Originality/valueCompared with conventional connection types, the proposed ductile connection exhibits considerable deformability, and can potentially enhance the robustness of structures in fire.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Reference41 articles.
1. Experimental investigation of the performance of a modified 3D printed 316L stainless steel structural connection at elevated temperatures,2016
2. A generalised steel/reinforced concrete beam-column element model for fire conditions;Engineering Structures,2003
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献