Abstract
PurposeDespite better accessibility and flexibility, peer-to-peer (P2P) lending has suffered from excessive credit risks, which may cause significant losses to the lenders and even lead to the collapse of P2P platforms. The purpose of this research is to construct a hybrid predictive framework that integrates classification, feature selection, and data balance algorithms to cope with the high-dimensional and imbalanced nature of P2P credit data.Design/methodology/approachAn improved synthetic minority over-sampling technique (IMSMOTE) is developed to incorporate the randomness and probability into the traditional synthetic minority over-sampling technique (SMOTE) to enhance the quality of synthetic samples and the controllability of synthetic processes. IMSMOTE is then implemented along with the grey relational clustering (GRC) and the support vector machine (SVM) to facilitate a comprehensive assessment of the P2P credit risks. To enhance the associativity and functionality of the algorithm, a dynamic selection approach is integrated with GRC and then fed in the SVM's process of parameter adaptive adjustment to select the optimal critical value. A quantitative model is constructed to recognize key criteria via multidimensional representativeness.FindingsA series of experiments based on real-world P2P data from Prosper Funding LLC demonstrates that our proposed model outperforms other existing approaches. It is also confirmed that the grey-based GRC approach with dynamic selection succeeds in reducing data dimensions, selecting a critical value, identifying key criteria, and IMSMOTE can efficiently handle the imbalanced data.Originality/valueThe grey-based machine-learning framework proposed in this work can be practically implemented by P2P platforms in predicting the borrowers' credit risks. The dynamic selection approach makes the first attempt in the literature to select a critical value and indicate key criteria in a dynamic, visual and quantitative manner.
Reference57 articles.
1. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey;Energy,2007
2. SMOTE for high-dimensional class-imbalanced data;Bmc Bioinformatics,2013
3. A training algorithm for optimal margin classifiers,2008
4. Modelling of land-use change in Thailand using binary logistic regression and multinomial logistic regression;Arabian Journal of Geosciences,2020
5. SMOTE: synthetic minority over-sampling technique;Journal of Artificial Intelligence Research,2002
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献