Insights gained from early modelling of COVID-19 to inform the management of outbreaks in UK prisons

Author:

Bays Declan,Williams Hannah,Pellis Lorenzo,Curran-Sebastian Jacob,O'Mara Oscar,Team PHE Joint Modelling,Finnie Thomas

Abstract

Purpose In this work, the authors present some of the key results found during early efforts to model the COVID-19 outbreak inside a UK prison. In particular, this study describes outputs from an idealised disease model that simulates the dynamics of a COVID-19 outbreak in a prison setting when varying levels of social interventions are in place, and a Monte Carlo-based model that assesses the reduction in risk of case importation, resulting from a process that requires incoming prisoners to undergo a period of self-isolation prior to admission into the general prison population. Design/methodology/approach Prisons, typically containing large populations confined in a small space with high degrees of mixing, have long been known to be especially susceptible to disease outbreaks. In an attempt to meet rising pressures from the emerging COVID-19 situation in early 2020, modellers for Public Health England’s Joint Modelling Cell were asked to produce some rapid response work that sought to inform the approaches that Her Majesty’s Prison and Probation Service (HMPPS) might take to reduce the risk of case importation and sustained transmission in prison environments. Findings Key results show that deploying social interventions has the potential to considerably reduce the total number of infections, while such actions could also reduce the probability that an initial infection will propagate into a prison-wide outbreak. For example, modelling showed that a 50% reduction in the risk of transmission (compared to an unmitigated outbreak) could deliver a 98% decrease in total number of cases, while this reduction could also result in 86.8% of outbreaks subsiding before more than five persons have become infected. Furthermore, this study also found that requiring new arrivals to self-isolate for 10 and 14 days prior to admission could detect up to 98% and 99% of incoming infections, respectively. Research limitations/implications In this paper we have presented models which allow for the studying of COVID-19 in a prison scenario, while also allowing for the assessment of proposed social interventions. By publishing these works, the authors hope these methods might aid in the management of prisoners across additional scenarios and even during subsequent disease outbreaks. Such methods as described may also be readily applied use in other closed community settings. Originality/value These works went towards informing HMPPS on the impacts that the described strategies might have during COVID-19 outbreaks inside UK prisons. The works described herein are readily amendable to the study of a range of addition outbreak scenarios. There is also room for these methods to be further developed and built upon which the timeliness of the original project did not permit.

Publisher

Emerald

Subject

Health Professions (miscellaneous)

Reference20 articles.

1. What effect might border screening have on preventing importation of COVID-19 compared with other infections? A modelling study,2020

2. Testing for COVID-19;The Lancet Respiratory Medicine,2020

3. Coronavirus (Covid-19) outbreak on the cruise ship diamond princess;International Maritime Health,2020

4. ECDC (2020), “Diagnostic testing and screening for SARS-CoV-2”, available at: www.ecdc.europa.eu/en/covid-19/latest-evidence/diagnostic-testing (accessed 28 September 2020).

5. An analysis of influenza outbreaks in institutions and enclosed societies;Epidemiology and Infection,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3