Using machine learning methods to predict future churners: an analysis of repeat hotel customers

Author:

Dursun-Cengizci Aslıhan,Caber Meltem

Abstract

Purpose This study aims to predict customer churn in resort hotels by calculating the churn probability of repeat customers for future stays in the same hotel brand. Design/methodology/approach Based on the recency, frequency, monetary (RFM) paradigm, random forest and logistic regression supervised machine learning algorithms were used to predict churn behavior. The model with superior performance was used to detect potential churners and generate a priority matrix. Findings The random forest algorithm showed a higher prediction performance with an 80% accuracy rate. The most important variables were RFM-based, followed by hotel sector-specific variables such as market, season, accompaniers and booker. Some managerial strategies were proposed to retain future churners, clustered as “hesitant,” “economy,” “alternative seeker,” and “opportunity chaser” customer groups. Research limitations/implications This study contributes to the theoretical understanding of customer behavior in the hospitality industry and provides valuable insight for hotel practitioners by demonstrating the methods that facilitate the identification of potential churners and their characteristics. Originality/value Most customer retention studies in hospitality either concentrate on the antecedents of retention or customers’ revisit intentions using traditional methods. Taking a unique place within the literature, this study conducts churn prediction analysis for repeat hotel customers by opening a new area for inquiry in hospitality studies.

Publisher

Emerald

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3