Prediction of multiproject resource conflict risk via an artificial neural network

Author:

Bai Libiao,Wang Zhiguo,Wang Hailing,Huang Ning,Shi Huijing

Abstract

PurposeInadequate balancing of resources often results in resource conflict in the multiproject management process. Past research has focused on how to allocate a small amount of resources optimally but has scarcely explored how to foresee multiproject resource conflict risk in advance. The purpose of this study is to address this knowledge gap by developing a model to predict multiproject resource conflict risk.Design/methodology/approachA fuzzy comprehensive evaluation method is used to transform subjective judgments into quantitative information, based on which an evaluation index system for multiproject resource conflict risk that focuses on the interdependence of multiple project resources is proposed. An artificial neural network (ANN) model combined with this system is proposed to predict the comprehensive risk score that can describe the severity of risk.FindingsAccurately predicting multiproject resource conflict risks in advance can reduce the risk to the organization and increase the probability of achieving the project objectives. The ANN model developed in this paper by the authors can capture the essential components of the underlying nonlinear relevance and is capable of predicting risk appropriately.Originality/valueThe authors explored the prediction of the risks associated with multiproject resource conflicts, which is important for improving the success rate of projects but has received limited attention in the past. The authors established an evaluation index system for these risks considering the interdependence among project resources to describe the underlying factors that contribute to resource conflict risks. The authors proposed an effective model to forecast the risk of multiproject resource conflicts using an ANN. The model can effectively predict complex phenomena with complicated and highly nonlinear performance functions and solve problems with many random variables.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference67 articles.

1. Resource management process framework for dynamic NPD portfolios;International Journal of Project Management,2015

2. Stochastic earned value analysis using Monte Carlo simulation and statistical learning techniques;International Journal of Project Management,2015

3. Modeling the effect of process parameters on the photocatalytic degradation of organic pollutants using artificial neural networks;Process Safety and Environmental Protection, Institution of Chemical Engineers,2021

4. An adaptive neural network algorithm for assessment and improvement of job satisfaction with respect to HSE and ergonomics program: the case of a gas refinery;Journal of Loss Prevention in the Process Industries,2011

5. The dropout learning algorithm;Artificial Intelligence,2014

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3