Interca: an R library implementing “automatic” interpretation of results of multiple correspondence analysis (MCA)

Author:

Moschidis Stratos,Markos AngelosORCID,Ioannidis Dimosthenis

Abstract

PurposeThe purpose of this paper is to develop a software-library in the R programming language that implements the concepts of the interpretive coordinate, interpretive axis and interpretive plane. This allows for the automatic and reliable interpretation of results from the multiple correspondence analysis (MCA) as previously proposed and published. Consequently, the users can seamlessly apply these concepts to their data, both via R commands and a corresponding graphical interface.Design/methodology/approachWithin the context of this study, and through extensive literature review, the advantages of developing software using the Shiny library were examined. This library allows for the development of full-stack applications for R users without the need for knowledge of the corresponding technologies required for the development of complex applications. Additionally, the structural components of a Shiny application were presented, leading ultimately to the proposed software application.FindingsSoftware utilizing the Shiny library enables nonexpert developers to rapidly develop specialized applications, either to present or to assist in the understanding of objects or concepts that are scientifically intriguing and complex. Specifically, with this proposed application, the users can promptly and effectively apply the scientific concepts addressed in this study to their data. Additionally, they can dynamically generate charts and reports that are readily available for download and sharing.Research limitations/implicationsThe proposed package is an implementation of the fundamental concepts of the exploratory MCA method. In the next step, discoveries from the geometric data analysis will be added as features to provide more comprehensive information to the users.Practical implicationsThe practical implications of this work include the dissemination of the method’s use to a broader audience. Additionally, the decision to implement it with open-source code will result in the integration of the package’s functions by other third-party user packages.Originality/valueThe proposed software introduces the initial implementation of concepts such as interpretive coordination, the interpretive axis and the interpretive plane. This package aims to broaden and simplify the application of these concepts to benefit stakeholders in scientific research. The software can be accessed for free in a code repository, the link to which is provided in the full text of the study.

Publisher

Emerald

Reference35 articles.

1. A mixed approach of deep learning method and rule-based method to improve aspect level sentiment analysis;Appl Comput Inform,2020

2. Using transfer learning for diabetic retinopathy stage classification;Appl Comput Inform,2021

3. Classification assessment methods;Appl Comput Inform,2020

4. The impact of data pre-processing techniques and dimensionality reduction on the accuracy of machine learning

5. Multiple correspondence analysis;Encyclopedia Meas Stat,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3