RAMP – the Repository Analytics and Metrics Portal

Author:

OBrien Patrick,Arlitsch KenningORCID,Mixter Jeff,Wheeler Jonathan,Sterman Leila Belle

Abstract

Purpose The purpose of this paper is to present data that begin to detail the deficiencies of log file analytics reporting methods that are commonly built into institutional repository (IR) platforms. The authors propose a new method for collecting and reporting IR item download metrics. This paper introduces a web service prototype that captures activity that current analytics methods are likely to either miss or over-report. Design/methodology/approach Data were extracted from DSpace Solr logs of an IR and were cross-referenced with Google Analytics and Google Search Console data to directly compare Citable Content Downloads recorded by each method. Findings This study provides evidence that log file analytics data appear to grossly over-report due to traffic from robots that are difficult to identify and screen. The study also introduces a proof-of-concept prototype that makes the research method easily accessible to IR managers who seek accurate counts of Citable Content Downloads. Research limitations/implications The method described in this paper does not account for direct access to Citable Content Downloads that originate outside Google Search properties. Originality/value This paper proposes that IR managers adopt a new reporting framework that classifies IR page views and download activity into three categories that communicate metrics about user activity related to the research process. It also proposes that IR managers rely on a hybrid of existing Google Services to improve reporting of Citable Content Downloads and offers a prototype web service where IR managers can test results for their repositories.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference40 articles.

1. Alphabet Inc. (2015), “Consolidated revenues”, Form 10K, United States Securities and Exchange Commission, Washington, DC, available at: www.sec.gov/Archives/edgar/data/1288776/000165204416000012/goog10-k2015.htm#s2A481E6E5C511C2C8AAECA5160BB1908 (accessed October 28, 2016).

2. Arlitsch, K., OBrien, P., Kyrillidou, M., Clark, J.A., Young, S.W.H., Mixter, J., Chao, Z., Freels-Stendel, B. and Stewart, C. (2014), “Measuring up: assessing accuracy of reported use and impact of digital repositories”, Funded grant proposal, Institute of Museum and Library Services, Washington, DC, available at: http://scholarworks.montana.edu/xmlui/handle/1/8924 (accessed July 15, 2016).

3. Google Scholar wins raves – but can it be trusted?;Science Magazine,2014

4. Researchers of tomorrow: the research behaviour of Generation Y doctoral students;Information Services and Use,2012

5. Cisco (2016), “The zettabyte era – trends and analysis”, Cisco, Cisco Visual Networking Index, available at: www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3