Monitoring climate change related biodeterioration of protected historic buildings

Author:

Austigard Mari Sand,Mattsson Johan

Abstract

Purpose Expected rates of biodeterioration in heritage buildings under historic conditions are well known. Deteriorating organisms will benefit from a warmer and wetter climate, giving faster and less predictable rates of deterioration. The Directorate for Cultural Heritage in Norway has requested development of a programme for long-term monitoring of climate change impacts to historic buildings. The development process and resulting monitoring system are previously described. The paper aims to discuss this issue. Design/methodology/approach An initial conditions survey is performed, and reference points are chosen in each building. Two microclimatic biodeterioration monitoring panels (MBM panels) are mounted in every building. The MBM panels monitor temperature, relative humidity and wood moisture content, and have standard wooden blocks for investigation of mould growth. The panels will show both the influence of outdoor climate on microclimate inside the building, and the connection between microclimate and activity of degrading organisms. Findings High competence and multi-disciplinary approach from the personnel involved are essential to balance flexibility and rigidity and decide the damages that are probably influenced by climate change. Extensive knowledge and experience in surveys of biodeterioration damages in heritage buildings is necessary to distinguish “normal” biodeterioration from biodeterioration caused by climate changes. The MBM panels are essential for possible establishment of causality between damages and climate change. Originality/value The authors believe that the methods described give the best possible grounds for future evaluation of damages and microclimatic conditions in buildings compared to changes in regional climatic conditions. Establishment of causality between climate change and development in biological deterioration is still a challenging task.

Publisher

Emerald

Subject

Building and Construction,Civil and Structural Engineering

Reference37 articles.

1. Aphyllophorales on wooden fences in Norway;Windahlia,1987

2. Faktorer som påvirker levetiden til tre utendørs;Agarica,2014

3. Status determination of historical buildings, an example,2015

4. Dry rot fungus (Serpula lacrymans) in Norwegian buildings;Agarica,2014

5. Brimblecombe, P. (2010), “Monitoring the future”, in Lefèvre, R.A. and Sabbioni, C. (Eds), Climate Change and Cultural Heritage, Edipuglia, Bari, pp. 73-78.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3