Optimal trajectory planning of industrial robot for improving positional accuracy

Author:

Rout Amruta,BBVL Deepak,Biswal Bibhuti B.,Mahanta Golak Bihari

Abstract

Purpose The purpose of this paper is to improve the positional accuracy, smoothness on motion and productivity of industrial robot through the proposed optimal joint trajectory planning method. Also a new improved algorithm, i.e. non-dominated sorting genetic algorithm-II (NSGA-II) with achievement scalarizing function (ASF) has been proposed to obtain better optimal results compared to previously used optimization methods. Design/methodology/approach The end effector positional errors can be reduced by limiting the uncertainties of dynamic parameter variations like torque rate of joints. The jerk induced in robot joints due to acceleration variations are need to be minimized which otherwise induces vibrations in the manipulator that causes deviation in the encoders. But these lead to a vast increase in total travel time which affects the cost function of trajectory planning. Therefore, these three objectives need to be minimized individually so that an optimal trajectory path can be achieved with minimum positional error. Findings The simulation results have been obtained by running the proposed hybrid NSGA-II with ASF in MATLAB R2017a software. The optimal time intervals have been used to calculate jerk, acceleration and torque values for consecutive points on the trajectory path. From the simulation and experimental results, it can be concluded that the optimization technique could be used effectively for the trajectory planning of six-axis industrial manipulator in the joint space on the basis of minimum time-jerk-torque rate criteria. Originality/value In this paper, a new approach based on hybrid multi-objective optimization technique by combining NSGA-II with ASF has been applied to find the minimal time-jerk- torque rate joint trajectory of a six-axis industrial robot for obtaining higher positional accuracy. The results obtained from the execution of algorithm have been validated through experimentation using Kawasaki RS06L industrial robot for a particular defined path.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3