Establishing reduced thermal mathematical model (RTMM) for a space equipment: an integrative review

Author:

Akbulut Mustafa,Ertas Ahmet H.

Abstract

Purpose The purpose of this study is to, first, provide an overview of the previously conducted works related to thermal analysis of space equipment, including battery packages, especially lithium (Li)-ion ones. Second, the need for a reduced thermal mathematical model (RTMM) and a procedure devising it is defined. Finally, an experimental steady-state temperature distribution test is conducted to finalize the RTMM study. Design/methodology/approach This study was carried out as part of a development project for thermal analysis of Li-ion battery packages used in a space equipment. The study presents certain stages of the design of the battery pack in parallel with battery technology development. Following a literature review, a numerical thermal analysis is conducted; then interface thermal conductance values are found out by means of the first law of thermodynamics; and the study is completed with the help of an experimental test. Findings The study provides key aspects for a successful battery-package thermal design for a space equipment. Additionally, the study summarizes the experimental results used in the RTMM process and the computed thermal conductance values between node couples. Practical implications Thermal analysis is important and vital in space equipment considering their harsh working conditions and environments. Hence, the study provides a RTMM for the thermal analysis of Li-ion battery packages, instead of a full finite element model, to save computational time and CPU usage. The findings are supported by experimental results. Hence, presented details can be used as guidelines for enterprises having a goal of battery package technology achievement, including design and manufacturing. Originality/value After providing a literature review of studies conducted on satellite subsystems including Li-ion batteries, this study presents a clear, complete and verified process of a RTMM for a Li-ion battery package in aero/space structures design. It presents details of building up a model and calculation methodology through an iterative procedure in which an optimization algorithm known as particle swarm optimization (PSO) was benefitted. In the RTMM, additionally, experimental temperature distributions obtained through thermal vacuum test were presented. It has been shown that the model can be used reliably in designing space equipments.

Publisher

Emerald

Subject

Aerospace Engineering

Reference43 articles.

1. Architecture optimization of 4PUS+1PS parallel manipulator;Robotica,2011

2. An investigation of non-linear optimization methods on composite structures under vibration and buckling loads;Advances in Computational Design,2020

3. Optoelectronics in satellite designs;Sadhana,1992

4. Arı, B.B. (2021), “Spacecraft thermal modelling and analysis using the thermal network model”. Master's , Thesis, Istanbul Technical University.

5. Thermal design, analysis, and testing of the first Turkish 3U communication CubeSat in low earth orbit;Journal of Thermal Analysis and Calorimetry,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3