Improved particle filter-based estimation of a quadrotor subjected to uncertainties

Author:

Kaba Aziz,Ermeydan Ahmet

Abstract

PurposeThe purpose of this paper is to present an improved particle filter-based attitude estimator for a quadrotor unmanned aerial vehicle (UAV) that addresses the degeneracy issues.Design/methodology/approachControl of a quadrotor is not sufficient enough without an estimator to eliminate the noise from low-cost sensors. In this work, particle filter-based attitude estimator is proposed and used for nonlinear quadrotor dynamics. But, since recursive Bayesian estimation steps may rise degeneracy issues, the proposed scheme is improved with four different and widely used resampling algorithms.FindingsRobustness of the proposed schemes is tested under various scenarios that include different levels of uncertainty and different particle sizes. Statistical analyses are conducted to assess the error performance of the schemes. According to the statistical analysis, the proposed estimators are capable of reducing sensor noise up to 5x, increasing signal to noise ratio up to 2.5x and reducing the uncertainty bounds up to 36x with root mean square value of as low as 0.0024, mean absolute error value of 0.036, respectively.Originality/valueTo the best of the authors’ knowledge, the originality of this paper is to propose a robust particle filter-based attitude estimator to eliminate the low-cost sensor errors of quadrotor UAVs.

Publisher

Emerald

Subject

Aerospace Engineering

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3