On-line orbit planning and guidance for advanced upper stage

Author:

Zhang Liang,Wei Changzhu,Diao Yin,Cui Naigang

Abstract

Purpose This paper aims to investigate the problem of on-line orbit planning and guidance for an advanced upper stage. Design/methodology/approach The double impulse optimal transfer orbit is planned by the Lambert algorithm and the improved particle swarm optimization (IPSO) method, which can reduce the total velocity increment of the transfer orbit. More specially, a simplified formula is developed to obtain the working time of the main engine for two phases of flight based on the theorem of impulse. Subsequently, the true anomalies of the start position and the end position for both two phases are planned by the Newton iterative algorithm and the Kepler equation. Finally, the first phase of flight is guided by a novel iterative guidance (NIG) law based on the true anomaly update with respect to the geometrical relationship. Also, a completely analytical powered explicit guidance (APEG) law is presented to realize orbital injection for the second phase of flight. Findings Simulations including Monte Carlo and three typical orbit transfer missions are carried out to demonstrate the efficiency of the proposed scheme. Originality/value A novel on-line orbit planning algorithm is developed based on the Lambert problem, IPSO optimization method and Newton iterative algorithm. The NIG and APEG are presented to realize the designed transfer orbit for the first and second phases of flight. Both two guidance laws achieve higher orbit injection accuracies than traditional guidance laws.

Publisher

Emerald

Subject

Aerospace Engineering

Reference32 articles.

1. Minimum time multiple-burn optimization for an upper stage with a finite thrust for satellite injection into geostationary orbit;Proceedings of Institution of Mechanical of Engineers, Part G: Journal of Aerospace Engineering,2017

2. Safe trajectories for autonomous rendezvous of spacecraft;Journal of Guidance, Control, and Dynamics,2008

3. Coffey, R.E. (1990), “The application of depot transfer/rendezvous in space-based cyclic orbit missions”, PhD thesis, University of Colorado at Boulder.

4. An iterative guidance algorithm using orbital elements as terminal constraints for spacecraft orbit transfer;Acta Aeronautica et Astronautica Sinica,2015

5. Fuel optimization for continuous-thrust orbital rendezvous with collision avoidance constraint;Journal of Guidance, Control, and Dynamics,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3