Controlling degree of foaming in extrusion 3D printing of porous polylactic acid

Author:

Dinakaran Iniya,Sakib-Uz-Zaman Chowdhury,Rahman Arafater,Khondoker Mohammad Abu Hasan

Abstract

Purpose This paper aims to understand the effect of extrusion conditions on the degree of foaming of polylactic acid (PLA) during three-dimensional (3D) printing. It was also targeted to optimize the slicing parameters for 3D printing and to study how the properties of printed parts are influenced by the extrusion conditions. Design/methodology/approach This study used a commercially available PLA filament that undergoes chemical foaming. An extrusion 3D printer was used to produce individual extrudates and print samples that were characterized using an optical microscope, scanning electron microscope and custom in-house apparatuses. Findings The degree of foaming of the extrudates was found to strongly depend on the extrusion temperature and the material feed speed. Higher temperatures significantly increased the number of nucleation sites for the blowing agent as well as the growth rate of micropores. Also, as the material feed speed increased, the micropores were allowed to grow bigger which resulted in higher degrees of foaming. It was also found that, as the degree of foaming increased, the porous parts printed with optimized slicing parameters were lightweight and thermally less conductive. Originality/value This study fills the gap in literature where it examines the foaming behavior of individual extrudates as they are extruded. By doing so, this work distinguishes the effect of extrusion conditions from the effect of slicing parameters on the foaming behavior which enhances the understanding of extrusion of chemically foamed PLA.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3