Simulation of temperature profile in fused filament fabrication 3D printing method

Author:

Mosleh Nastaran,Esfandeh Masoud,Dariushi Soheil

Abstract

Purpose Temperature is a critical factor in the fused filament fabrication (FFF) process, which affects the flow behavior and adhesion of the melted filament and the mechanical properties of the final object. Therefore, modeling and predicting temperature in FFF is crucial for achieving high-quality prints, repeatability, process control and failure prediction. This study aims to investigate the melt deposition and temperature profile in FFF both numerically and experimentally using different Acrylonitrile Butadiene Styrene single-strand specimens. The process parameters, including layer thickness, nozzle temperature and build platform temperature, were varied. Design/methodology/approach COMSOL Multiphysics software was used to perform numerical simulations of fluid flow and heat transfer for the printed strands. The polymer melt/air interface was tracked using the coupling of continuity equation, equation of motion and the level set equation, and the heat transfer equation was used to simulate the temperature distribution in the deposited strand. Findings The numerical results show that increasing the nozzle temperature or layer thickness leads to an increase in temperature at points close to the nozzle, but the bed temperature is the main determinant of the overall layer temperature in low-thickness strands. The experimental temperature profile of the deposited strand was measured using an infrared (IR) thermal imager to validate the numerical results. The comparison between simulation and observed temperature at different points showed that the numerical model accurately predicts heat transfer in the three-dimensional (3D) printing of a single-strand under different conditions. Finally, a parametric analysis was performed to investigate the effect of selected parameters on the thermal history of the printed strand. Originality/value The numerical results show that increasing the nozzle temperature or layer thickness leads to an increase in temperature at points close to the nozzle, but the bed temperature is the main determinant of the overall layer temperature in low-thickness strands. The experimental temperature profile of the deposited strand was measured using an IR thermal imager to validate the numerical results. The comparison between simulation and observed temperature at different points showed that the numerical model accurately predicts heat transfer in the 3D printing of a single-strand under different conditions. Finally, a parametric analysis was performed to investigate the effect of selected parameters on the thermal history of the printed strand.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3