Robotic constant force grinding control based on grinding model and iterative algorithm

Author:

Xiao Meng,Zhang Tie,Zou Yanbiao,Chen Shouyan

Abstract

Purpose The purpose of this paper is to propose a robot constant grinding force control algorithm for the impact stage and processing stage of robotic grinding. Design/methodology/approach The robot constant grinding force control algorithm is based on a grinding model and iterative algorithm. During the impact stage, active disturbance rejection control is used to plan the robotic reference contact force, and the robot speed is adjusted according to the error between the robot’s real contact force and the robot’s reference contact force. In the processing stage, an RBF neural network is used to construct a model with the robot's position offset displacement and controlled output, and the increment of control parameters is estimated according to the RBF neural network model. The error of contact force and expected force converges gradually by iterating the control parameters online continuously. Findings The experimental results show that the normal force overshoot of the robot based on the grinding model and iterative algorithm is small, and the processing convergence speed is fast. The error between the normal force and the expected force is mostly within ±3 N. The normal force based on the force control algorithm is more stable than the normal force based on position control, and the surface roughness of the processed workpiece has also been improved, the Ra value compared with position control has been reduced by 24.2%. Originality/value As the proposed approach obtains a constant effect in the impact stage and processing stage of robot grinding and verified by the experiment, this approach can be used for robot grinding for improved machining accuracy.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference26 articles.

1. Force/velocity control of a pneumatic gantry robot for contour tracking with neural network compensation,2007

2. Force control polishing device based on fuzzy adaptive impedance control;International Conference on Intelligent Robotics and Applications,2019

3. Trajectory tracking control of WMRs with lateral and longitudinal slippage based on active disturbance rejection control;Robotics and Autonomous Systems,2018

4. Research and application on force control of industrial robot polishing concave curved surfaces;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2018

5. Application and analysis of force control strategies to deburring and grinding;Modern Mechanical Engineering,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3