Optimizing the scheduling of crew deployments in repetitive construction projects under uncertainty

Author:

Hassan Abbas,El-Rayes Khaled,Attalla Mohamed

Abstract

PurposeThis paper presents the development of a novel model for optimizing the scheduling of crew deployments in repetitive construction projects while considering uncertainty in crew production rates.Design/methodology/approachThe model computations are performed in two modules: (1) simulation module that integrates Monte Carlo simulation and a resource-driven scheduling technique to calculate the earliest crew deployment dates for all activities that fully comply with crew work continuity while considering uncertainty; and (2) optimization module that utilizes genetic algorithms to search for and identify optimal crew deployment plans that provide optimal trade-offs between project duration and crew deployment plan cost.FindingsA real-life example of street renovation is analyzed to illustrate the use of the model and demonstrate its capabilities in optimizing the stochastic scheduling of crew deployments in repetitive construction projects.Originality/valueThe original contribution of this research is creating a novel multiobjective stochastic scheduling optimization model for both serial and nonserial repetitive construction projects that is capable of identifying an optimal crew deployment plan that simultaneously minimizes project duration and crew deployment cost.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference43 articles.

1. Causes of delay in building construction projects in Egypt;Journal of Construction Engineering and Management,2008

2. Monte Carlo simulation to solve fuzzy dynamic fault tree*;IFAC-Papers Online,2016

3. Probabilistic simulation studies for repetitive construction processes;Journal of Construction Engineering and Management,1991

4. Statistical properties OF construction duration data;Journal of Construction Engineering and Management,1992

5. Minimizing duration and crew work interruptions of repetitive construction projects;Automation in Construction,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3