Abstract
PurposeThe purpose of this paper is to evaluate project activities' efficiency in different execution modes for the optimization of time–cost-quality and environmental impacts trade-off problem.Design/methodology/approachThis paper presents a parallel Data Envelopment Analysis (DEA) method for evaluation of project activities with different execution modes to select the best execution mode and find a trade-off between objectives. Also, according to the nature of the project activities, outputs are categorized into desirable (quality) and undesirable (time, cost and environmental impacts) and analyzed based on the DEA model. In order to rank efficient execution modes, the ideal and anti-ideal virtual units method is used. The proposed model is implemented on a real case of a rural water supply construction project to demonstrate its validity.FindingsThe findings show that the use of the efficient execution mode in each activity leads to an optimal trade-off between the four project objectives (time, cost, quality and environmental impacts).Practical implicationsThis study help project managers and practitioners with choosing the most efficient execution modes of project activities taking time–cost-quality-environmental impacts into account.Originality/valueIn this paper, in addition to time and cost optimization of construction projects, quality factors and environmental impacts are considered. Further to the authors' knowledge, there is no method for evaluating project activities' efficiency. The efficiency of different activity modes is also evaluated for the first time to select the most efficient modes. This research can assist project managers with choosing the most appropriate execution modes for the activities to ultimately accomplish the project with the lowest time, cost and environmental impacts along with the highest quality.
Subject
General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献