Pose estimation method for construction machine based on improved AlphaPose model

Author:

Zhao JiayueORCID,Cao Yunzhong,Xiang Yuanzhi

Abstract

PurposeThe safety management of construction machines is of primary importance. Considering that traditional construction machine safety monitoring and evaluation methods cannot adapt to the complex construction environment, and the monitoring methods based on sensor equipment cost too much. This paper aims to introduce computer vision and deep learning technologies to propose the YOLOv5-FastPose (YFP) model to realize the pose estimation of construction machines by improving the AlphaPose human pose model.Design/methodology/approachThis model introduced the object detection module YOLOv5m to improve the recognition accuracy for detecting construction machines. Meanwhile, to better capture the pose characteristics, the FastPose network optimized feature extraction was introduced into the Single-Machine Pose Estimation Module (SMPE) of AlphaPose. This study used Alberta Construction Image Dataset (ACID) and Construction Equipment Poses Dataset (CEPD) to establish the dataset of object detection and pose estimation of construction machines through data augmentation technology and Labelme image annotation software for training and testing the YFP model.FindingsThe experimental results show that the improved model YFP achieves an average normalization error (NE) of 12.94 × 103, an average Percentage of Correct Keypoints (PCK) of 98.48% and an average Area Under the PCK Curve (AUC) of 37.50 × 103. Compared with existing methods, this model has higher accuracy in the pose estimation of the construction machine.Originality/valueThis study extends and optimizes the human pose estimation model AlphaPose to make it suitable for construction machines, improving the performance of pose estimation for construction machines.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference49 articles.

1. Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers;Advanced Engineering Informatics,2015

2. Tracking multiple construction workers through deep learning and the gradient based method with re-matching based on multi-object tracking accuracy;Automation in Construction,2020

3. Development of an image data set of construction machines for deep learning object detection;Journal of Computing in Civil Engineering,2021

4. Large-scale machine learning with stochastic gradient descent,2010

5. Automated vision tracking of project related entities;Advanced Engineering Informatics,2011

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3