Towards a novel cyber physical control system framework: a deep learning driven use case

Author:

Moufaddal MariamORCID,Benghabrit Asmaa,Bouhaddou Imane

Abstract

PurposeThe health crisis has highlighted the shortcomings of the industry sector which has revealed its vulnerability. To date, there is no guarantee of a return to the “world before”. The ability of companies to cope with these changes is a key competitive advantage requiring the adoption/mastery of industry 4.0 technologies. Therefore, companies must adapt their business processes to fit into similar situations.Design/methodology/approachThe proposed methodology comprises three steps. First, a comparative analysis of the existing CPSs is elaborated. Second, following this analysis, a deep learning driven CPS framework is proposed highlighting its components and tiers. Third, a real industrial case is presented to demonstrate the application of the envisioned framework. Deep learning network-based methods of object detection are used to train the model and evaluation is assessed accordingly.FindingsThe analysis revealed that most of the existing CPS frameworks address manufacturing related subjects. This illustrates the need for a resilient industrial CPS targeting other areas and considering CPSs as loopback systems preserving human–machine interaction, endowed with data tiering approach for easy and fast data access and embedded with deep learning-based computer vision processing methods.Originality/valueThis study provides insights about what needs to be addressed in terms of challenges faced due to unforeseen situations or adapting to new ones. In this paper, the CPS framework was used as a monitoring system in compliance with the precautionary measures (social distancing) and for self-protection with wearing the necessary equipments. Nevertheless, the proposed framework can be used and adapted to any industrial or non-industrial environments by adjusting object detection purpose.

Publisher

Emerald

Subject

Computer Science Applications,History,Education

Reference37 articles.

1. Feature-based control and information framework for adaptive and distributed manufacturing in cyber physical systems;Journal of Manufacturing Systems,2017

2. A deep learning-based social distance monitoring framework for COVID-19;Sustainable Cities and Society,2021

3. Data-driven cyber-physical system framework for connected resistance spot welding weldability certification;Robotics and Computer-Integrated Manufacturing,2021

4. An application of cyber-physical system and multi-agent technology to demand-side management systems;Pattern Recognition Letters,2021

5. Bagade, P., Banerjee, A. and Gupta, S.K.S. (2017), “Validation, verification, and formal methods for cyber-physical systems”, Cyber-Physical Systems, Elsevier, pp. 175-191.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3