Unmanned machine vision system for automated recognition of mechanical parts

Author:

Jain Tushar,Gupta Meenu,Sardana H.K.

Abstract

Purpose The field of machine vision, or computer vision, has been growing at fast pace. The growth in this field, unlike most established fields, has been both in breadth and depth of concepts and techniques. Machine vision techniques are being applied in areas ranging from medical imaging to remote sensing, industrial inspection to document processing and nanotechnology to multimedia databases. The goal of a machine vision system is to create a model of the real world from images. Computer vision recognition has attracted the attention of researchers in many application areas and has been used to solve many ranges of problems. The purpose of this paper is to consider recognition of objects manufactured in mechanical industry. Mechanically manufactured parts have recognition difficulties due to manufacturing process including machine malfunctioning, tool wear and variations in raw material. This paper considers the problem of recognizing and classifying the objects of such parts. RGB images of five objects are used as an input. The Fourier descriptor technique is used for recognition of objects. Artificial neural network (ANN) is used for classification of five different objects. These objects are kept in different orientations for invariant rotation, translation and scaling. The feed forward neural network with back-propagation learning algorithm is used to train the network. This paper shows the effect of different network architecture and numbers of hidden nodes on the classification accuracy of objects. Design/methodology/approach The overall goal of this research is to develop algorithms for feature-based recognition of 2D parts from intensity images. Most present industrial vision systems are custom-designed systems, which can only handle a specific application. This is not surprising, since different applications have different geometry, different reflectance properties of the parts. Findings Classification accuracy is affected by the changing network architecture. ANN is computationally demanding and slow. A total of 20 hidden nodes network structure produced the best results at 500 iterations (90 percent accuracy based on overall accuracy and 87.50 percent based on κ coefficient). So, 20 hidden nodes are selected for further analysis. The learning rate is set to 0.1, and momentum term used is 0.2 that give the best results architectures. The confusion matrix also shows the accuracy of the classifier. Hence, with these results the proposed system can be used efficiently for more objects. Originality/value After calculating the variation of overall accuracy with different network architectures, the results of different configuration of the sample size of 50 testing images are taken. Table II shows the results of the confusion matrix obtained on these testing samples of objects.

Publisher

Emerald

Reference36 articles.

1. Contrast stretching and non linear median filters for fabric inspection;International Journal of Computer Science and Information Technologies,2011

2. Fourier coding of image boundaries;IEEE Transactions on Pattern Analysis and Machine Intelligence,1984

3. Hand segmentation using camshift algorithm;International Journal of Graphics & Image Processing,2013

4. Cosgriff, R.L. (1960), “Identification of shape”, Report No. 820-11, Ohio State University Research Foundation, Columbus, OH.

5. Improved face/spl times/non-face discrimination using Fourier descriptors through feature selection;Computer Graphics and Image Processing,2000

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3