Obtaining depth map from 2D non stereo images using deep neural networks

Author:

Mikhalchenko Daniil Igorevich,Ivin Arseniy,Malov DmitriiORCID

Abstract

Purpose Single image depth prediction allows to extract depth information from a usual 2D image without usage of special sensors such as laser sensors, stereo cameras, etc. The purpose of this paper is to solve the problem of obtaining depth information from 2D image by applying deep neural networks (DNNs). Design/methodology/approach Several experiments and topologies are presented: DNN that uses three inputs—sequence of 2D images from videostream and DNN that uses only one input. However, there is no data set, that contains videostream and corresponding depth maps for every frame. So technique of creating data sets using the Blender software is presented in this work. Findings Despite the problem of an insufficient amount of available data sets, the problem of overfitting was encountered. Although created models work on the data sets, they are still overfitted and cannot predict correct depth map for the random images, that were included into the data sets. Originality/value Existing techniques of depth images creation are tested, using DNN.

Publisher

Emerald

Reference42 articles.

1. TensorFlow: a system for large-scale machine learning;The 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ‘16), November 2-4,2016

2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. (2016b), “Tensorflow: large-scale machine learning on heterogeneous distributed systems”, available at: https://arxiv.org/pdf/1603.04467.pdf (accessed May 1, 2018).

3. Alghofaili, R. (2015), “Depth estimation from a single image using a deep neural network”, available at: www.cs.dartmouth.edu/~lorenzo/teaching/cs174/Archive/Winter2015/Projects/proposals/a.pdf (accessed May 1, 2018).

4. Ashiquzzaman, A., Tushar, A.K., Islam, Md. R., Shon, D., Im, K., Park, J.-H., Lim, D.-S. and Kim, J. (2018), “Reduction of overfitting in diabetes prediction using deep learning neural network”, IT Convergence and Security, 2017, Springer, Singapore, pp. 35-43.

5. Analysis of balance control methods based on inverted pendulum for legged robots,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3