1. TensorFlow: a system for large-scale machine learning;The 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ‘16), November 2-4,2016
2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. (2016b), “Tensorflow: large-scale machine learning on heterogeneous distributed systems”, available at: https://arxiv.org/pdf/1603.04467.pdf (accessed May 1, 2018).
3. Alghofaili, R. (2015), “Depth estimation from a single image using a deep neural network”, available at: www.cs.dartmouth.edu/~lorenzo/teaching/cs174/Archive/Winter2015/Projects/proposals/a.pdf (accessed May 1, 2018).
4. Ashiquzzaman, A., Tushar, A.K., Islam, Md. R., Shon, D., Im, K., Park, J.-H., Lim, D.-S. and Kim, J. (2018), “Reduction of overfitting in diabetes prediction using deep learning neural network”, IT Convergence and Security, 2017, Springer, Singapore, pp. 35-43.
5. Analysis of balance control methods based on inverted pendulum for legged robots,2017