Predicting returns using moving averages: the role of investor inattention

Author:

Bhootra AjayORCID

Abstract

PurposeInvestors are inattentive to continuous information as opposed to discrete information, resulting in underreaction to continuous information. This paper aims to examine if the well-documented return predictability of the strategies based on the ratio of short-term to long-term moving averages can be enhanced by conditioning on information discreteness. Anchoring bias has been the popular explanation for the source of underreaction in the context of moving averages-based strategies. This paper proposes and studies another possible source based on investor inattention that can potentially result in superior performance of these strategies.Design/methodology/approachThe paper uses portfolio sorting as well as Fama-MacBeth cross-sectional regressions. For examining the role of information discreteness in the return predictability of the moving average ratio, the sample stocks are double-sorted based on the moving average ratio and information discreteness measure. The returns to these portfolios are computed using standard approaches in the literature. The regression approach controls for various well-known return predictors.FindingsThis study finds that the equally-weighted monthly returns to the long-short moving average ratio quintile portfolios increase monotonically from 0.54% for the discrete information portfolio to 1.37% for the continuous information portfolio over the 3-month holding period. This study observes a similar pattern in risk-adjusted returns, value-weighted portfolios, non-January returns, large and small stocks, for alternative holding periods and the ratio of 50-day to 200-day moving average. The results are robust to control for well-known return predictors in cross-sectional regressions.Research limitations/implicationsTo the best of the authors’ knowledge, this is the first paper to document the significant role of investor inattention to continuous information in the return predictability of strategies based on the moving average ratios. There are many underreaction anomalies that have been reported in the literature, and the paper's results can be extended to those anomalies in subsequent research.Practical implicationsThe findings of this paper have important practical implications. Strategies based on moving averages are an extremely popular component of a technical analyst's toolkit. Their profitability has been well-documented in the prior literature that attributes the performance to investors' anchoring bias. This paper offers a readily implementable approach to enhancing the performance of these strategies by conditioning on a straightforward measure of information discreteness. In doing so, this study extends the literature on the role of investor inattention to continuous information in anomaly profits.Originality/valueWhile there is considerable literature on technical analysis, and especially on the performance of moving averages-based strategies, the novelty of this paper is the analysis of the role of information discreteness in strategy performance. Not only does the paper document robust evidence, but the findings suggest that the investor’s inattention to continuous information is a more dominant source of underreaction compared to anchoring. This is an important result, given that anchoring has so far been considered the source of return predictability in the literature.

Publisher

Emerald

Subject

Business, Management and Accounting (miscellaneous),Finance

Reference27 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3