Can artificial neural networks predict lawyers’ performance rankings?

Author:

Lopes Susana Almeida,Duarte Maria Eduarda,Almeida Lopes João

Abstract

Purpose The purpose of this paper is to propose a predictive model that could replace lawyers’ annual performance rankings and inform talent management (TM) in law firms. Design/methodology/approach Eight years of performance rankings of a sample of 140 lawyers from one law firm are used. Artificial neural networks (ANNs) are used to model and simulate performance rankings over time. Multivariate regression analysis is used to compare with the non-linear networks. Findings With a lag of one year, performance ranking changes are predicted by the networks with an accuracy of 71 percent, over performing regression analysis by 15 percent. With a lag of two years, accuracy is reduced by 4 percent. Research limitations/implications This study contributes to the literature of TM in law firms and to predictive research. Generalizability would require replication with broader samples. Practical implications Neural networks enable extended intervals for performance rankings. Reducing the time and effort spent benefits partners and lawyers alike, who can instead devote time to in-depth feedback. Strategic planning, early identification of the most talented and avenues for tailored careers become open. Originality/value This study pioneers the use of ANNs in law firm TM. The method surpasses traditional static study of performance through its use of non-linear simulation and prediction modeling.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3