Author:
Kylili Angeliki,Georgali Phoebe-Zoe,Christou Petros,Fokaides Paris
Abstract
Purpose
The built environment is taking enormous leaps towards its digitalization. Computer-aided tools such as building information modeling (BIM) are found in the forefront of this evolution, playing a critical role in creating the foundations for the upcoming development of smart low-carbon cities. However, the potential of BIM is still untapped – links will need to be created among the available and forthcoming methodologies under one integral operational system. The purpose of this paper is to present an integrated BIM-based life cycle-oriented framework for achieving sustainable constructions at the pre-construction phase. The developed framework represents an example of the approaches that the construction industry will need to adopt to integrate the different tools under an integrated smart city context.
Design/methodology/approach
The methodological approach follows the development of four same-volume different-configuration three-dimensional BIM designs, which are coupled with life cycle assessment (LCA) tools for establishing sustainable building design.
Findings
The results of this paper indicated that the choice of building design and shape can play a significant role in reducing the embodied energy and embodied carbon of buildings, achieving a reduction of up to 15% compared to a reference building of same volume and gross floor area.
Originality/value
The originality of this paper is found in its approach application by coupling three-dimensional BIM models with LCA data, the use of reinforcement detailing in an nD BIM study and the employment of country-specific LCA databases.
Subject
Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献