Metadata categorization for identifying search patterns in a digital library

Author:

Bogaard TesselORCID,Hollink Laura,Wielemaker Jan,van Ossenbruggen Jacco,Hardman Lynda

Abstract

Purpose For digital libraries, it is useful to understand how users search in a collection. Investigating search patterns can help them to improve the user interface, collection management and search algorithms. However, search patterns may vary widely in different parts of a collection. The purpose of this paper is to demonstrate how to identify these search patterns within a well-curated historical newspaper collection using the existing metadata. Design/methodology/approach The authors analyzed search logs combined with metadata records describing the content of the collection, using this metadata to create subsets in the logs corresponding to different parts of the collection. Findings The study shows that faceted search is more prevalent than non-faceted search in terms of number of unique queries, time spent, clicks and downloads. Distinct search patterns are observed in different parts of the collection, corresponding to historical periods, geographical regions or subject matter. Originality/value First, this study provides deeper insights into search behavior at a fine granularity in a historical newspaper collection, by the inclusion of the metadata in the analysis. Second, it demonstrates how to use metadata categorization as a way to analyze distinct search patterns in a collection.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference34 articles.

1. Agichtein, E., White, R.W., Dumais, S.T. and Bennett, P.N. (2012), “Search, interrupted: understanding and predicting search task continuation”, in Hersh, W.R., Callan, J., Maarek, Y. and Sanderson, M. (Eds), The 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ‘12, ACM, Portland, OR, August 12–16, pp. 315-324.

2. Baeza-Yates, R., Hurtado, C. and Mendoza, M. (2005), “Query recommendation using query logs in search engines”, in Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y. and Vakali, A.I. (Eds), Current Trends in Database Technology – EDBT 2004 Workshops: EDBT 2004 Workshops PhD, DataX, PIM, P2P&DB, and ClustWeb, Heraklion, Crete, Greece, Springer, Berlin and Heidelberg, March 14–18, pp. 588-596.

3. Beitzel, S.M., Jensen, E.C., Chowdhury, A., Grossman, D.A. and Frieder, O. (2004), “Hourly analysis of a very large topically categorized web query log”, in Sanderson, M., Järvelin, K., Allan, J. and Bruza, P. (Eds), SIGIR 2004: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, Sheffield, July 25–29, pp. 321-328.

4. Bogaard, T., Wielemaker, J., Hollink, L. and van Ossenbruggen, J. (2017), “Swish DataLab: a web interface for data exploration and analysis”, in Bosse, T. and Bredeweg, B. (Eds), BNAIC 2016: Artificial Intelligence, Springer International Publishing, Cham, pp. 181-187.

5. Analyzing information seeking and drug-safety alert response by health care professionals as new methods for surveillance;Journal of Medical Internet Research,2015

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3