Automatic classification of older electronic texts into the Universal Decimal Classification–UDC

Author:

Kragelj Matjaž,Kljajić Borštnar MirjanaORCID

Abstract

PurposeThe purpose of this study is to develop a model for automated classification of old digitised texts to the Universal Decimal Classification (UDC), using machine-learning methods.Design/methodology/approachThe general research approach is inherent to design science research, in which the problem of UDC assignment of the old, digitised texts is addressed by developing a machine-learning classification model. A corpus of 70,000 scholarly texts, fully bibliographically processed by librarians, was used to train and test the model, which was used for classification of old texts on a corpus of 200,000 items. Human experts evaluated the performance of the model.FindingsResults suggest that machine-learning models can correctly assign the UDC at some level for almost any scholarly text. Furthermore, the model can be recommended for the UDC assignment of older texts. Ten librarians corroborated this on 150 randomly selected texts.Research limitations/implicationsThe main limitations of this study were unavailability of labelled older texts and the limited availability of librarians.Practical implicationsThe classification model can provide a recommendation to the librarians during their classification work; furthermore, it can be implemented as an add-on to full-text search in the library databases.Social implicationsThe proposed methodology supports librarians by recommending UDC classifiers, thus saving time in their daily work. By automatically classifying older texts, digital libraries can provide a better user experience by enabling structured searches. These contribute to making knowledge more widely available and useable.Originality/valueThese findings contribute to the field of automated classification of bibliographical information with the usage of full texts, especially in cases in which the texts are old, unstructured and in which archaic language and vocabulary are used.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3