Freeform fabrication and characterization of Zn‐air batteries

Author:

Malone Evan,Berry Megan,Lipson Hod

Abstract

PurposeThe paper's aim is to show the development of materials and methods which allow freeform fabrication of macroscopic Zn‐air electrochemical batteries. Freedom of geometric design may allow for new possibilities in performance optimization.Design/methodology/approachThe authors have formulated battery materials which are compatible with solid freeform fabrication (SFF) while retaining electrochemical functionality. Using SFF processes, they have fabricated six Zn‐air cylindrical batteries and quantitatively characterized them and comparable commercial batteries. They analyze their performance in light of models from the literature and they also present SFF of a flexible two‐cell battery of unusual geometry.FindingsUnder continuous discharge to 0.25 V/cell with a 100 Ω load, the cylindrical cells have a specific energy and power density in the range of 40‐70 J/g and 0.4‐1 mW/cm2, respectively, with a mass range of 8‐18 g. The commercial Zn‐air button cells tested produce 30‐750 J/g and 7‐9 mW/cm2 under the same conditions, and have a mass range of 0.2‐2 g. The two‐cell, flexible Zn‐air battery produces a nominal 2.8 V, open‐circuit.Research limitations/implicationsThe freeform‐fabricated batteries have ∼10 percent of the normalized performance of the commercial batteries. High‐internal contact resistance, loss of electrolyte through evaporation, and inferior catalyst reagent quality are possible causes of inferior performance. Complicated material preparation and battery fabrication processes have limited the number of batteries fabricated and characterized, limiting the statistical significance of the results.Practical implicationsPerformance enhancement will be necessary before the packaging efficiency and design freedom provided by freeform‐fabricated batteries will be of practical value.Originality/valueThe paper demonstrates a multi‐material SFF system, material formulations, and fabrication methods which together allow the fabrication of complete functional Zn‐air batteries. It provides the first quantitative characterization of completely freeform‐fabricated Zn‐air batteries and comparison to objective standards, and shows that highly unusual, functional battery designs incorporating flexibility, multiple cells, and unusual geometry may be freeform fabricated.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A bibliometric study of additively manufactured batteries;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-09-09

2. Extrusion‐Based Additive Manufacturing of Carbonaceous and Non‐Carbonaceous Electrode Materials for Electrochemical Energy Storage Devices;Advanced Materials Technologies;2024-07-20

3. Rapid prototyping;Advances in Biomedical Polymers and Composites;2023

4. Introduction to Zinc–Air Batteries;Zinc‐Air Batteries;2022-10-14

5. An experimental investigation on the design and development of zinc-air battery for EVs;THE 8TH ANNUAL INTERNATIONAL SEMINAR ON TRENDS IN SCIENCE AND SCIENCE EDUCATION (AISTSSE) 2021;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3