Construction of 3D biological matrices using rapid prototyping technology

Author:

Maher P.S.,Keatch R.P.,Donnelly K.,Mackay R.E.,Paxton J.Z.

Abstract

PurposeHydrogels with low viscosities tend to be difficult to use in constructing tissue engineering (TE) scaffolds used to replace or restore damaged tissue, due to the length of time it takes for final gelation to take place resulting in the scaffolds collapsing due to their mechanical instability. However, recent advances in rapid prototyping have allowed for a new technology called bioplotting to be developed, which aims to circumvent these inherent problems. This paper aims to present details of the process.Design/methodology/approachThe paper demonstrates how by using the bioplotting technique complex 3D geometrical scaffolds with accurate feature sizes and good pore definition can be fabriated for use as biological matrices. PEG gels containing the cell‐adhesive RGD peptide sequence were patterned using this method to produce layers of directional microchannels which have a functionalised bioactive surface. Seeding these gels with C2C12 myoblasts showed that the cells responded to the topographical features and aligned themselves along the direction of the channels.FindingsThis process allows plotting of various materials into a media bath containing material of similar rheological properties which can be used to both support the structure as it is dispensed and also to initiate cross‐linking of the hydrogel. By controlling concentrations, viscosity and the temperature of both the plotting material and the plotting media, the speed of the hydrogel gelation can be enhanced whilst it is cross‐linking in the media bath. TE scaffolds have been produced using a variety of materials including poly(ethylene glycol) (PEG), gelatin, alginic acid and agarose at various concentrations and viscosities.Originality/valueThis paper describes one of the very few examples of accurate construction of 3D biological microporous matrices using hydrogel material fabricated by the bioplotting technique. This demonstrates that this technique can be used to produce 3D scaffolds which promote tissue regeneration.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference19 articles.

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3