Author:
Liou Frank,Slattery Kevin,Kinsella Mary,Newkirk Joseph,Chou Hsin‐Nan,Landers Robert
Abstract
PurposeThis paper sets out to summarize the current research, development, and integration of a hybrid process to produce high‐temperature metallic materials. It seeks to present the issues and solutions, including the understanding of the direct laser deposition process, and automated process planning.Design/methodology/approachResearch in simulation and modeling, process development, integration, and actual part building for hybrid processing are discussed.FindingsCoupling additive and subtractive processes into a single workstation, the integrated process, or hybrid process, can produce metal parts with machining accuracy and surface finish. Therefore, the hybrid process is potentially a very competitive process to fabricate metallic structures.Originality/valueRapid prototyping technology has been of interest to various industries that are looking for a process to produce/build a part directly from a CAD model in a short time. Among them, the direct laser deposition process is one of the few processes which directly manufacture a fully dense metal part without intermediate steps. Presented in this paper is the research, development, and system integration to resolve the challenges of the direct metal deposition process including building overhang structures, producing precision surfaces, and making parts with complex structures.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献