Gas film lubrication method on rotation shaft seal based on contact design

Author:

Wang Yue,Zou Longqing,Fu Hailong,Huang Congcong,Liu Jiaqi

Abstract

Purpose Wear failure happens frequently in rubber seal of high-speed rotating shaft because of the dry friction. Some traditional lubrication methods are not effective because of the restrictions on the relative high speed, temperature and others. This paper aims to present a new method of lubrication with gas film for the rotation shaft seal based on the contact design. Design/methodology/approach To obtain the generation condition of gas film and good effect of lubrication in the contact gap between the shaft and its seal, a series of micro-spiral grooves are designed on the contact surface of rubber seal so as to obtain a continuous dynamic pressure difference. Findings The result is that the distribution of the gas film in the micro-gap is continuous under the design of the spiral grooves and the contact with eccentricity because of the deformation of rubber seal, which is verified through the simulation calculation and experiment test. It is confirmed that the lubrication method with gas film through designing micro-spiral grooves on the contact surface is effective, and can achieve self-adaptive air lubrication for the high-speed shaft under the premise of the reliable sealing. Originality/value The method of gas film lubrication is realized through designing a microstructure of spiral grooves on the rubber surface to change the contact status, which can form a mechanism of adaptive lubrication to reduce the dry friction automatically in the contact gap. For the cross-scale difference between the rubber seal and gas film, a new modeling method is presented by building the mapping relation for the split blocks and repairing technique with integrated computer engineering and manufacturing, to reduce the possibility of nonconvergence and improve the efficiency and accuracy of calculation.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference35 articles.

1. An improved analytical solution for self-acting, gas-lubricated journal bearings of finite length;Journal of Fluids Engineering,1961

2. Influence of fluid flow regime on performances of non-contacting liquid face seals;Journal of Tribology,2002

3. Steady-state characteristics of gas-lubricated, self-acting, partial-arc journal bearings of finite width;Tribology Transactions,1964

4. Effects of operating parameters on the seal performance of cylindrical gas film;Fluid Machinery,2014

5. Study on seal of gas along cylindrical spiral groove;Journal of Beijing University of Aeronautics and Astronautics,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Simulation Analysis of Stern Shaft Air Seal System;2023 9th International Conference on Fluid Power and Mechatronics (FPM);2023-08-18

2. Numerical analysis and formula correction of mechanical seal ring wear of slurry pump based on thermal deformation;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3