Author:
Qadir Junaid,Islam Mohammad Qamar,Al-Fuqaha Ala
Abstract
Purpose
Along with the various beneficial uses of artificial intelligence (AI), there are various unsavory concomitants including the inscrutability of AI tools (and the opaqueness of their mechanisms), the fragility of AI models under adversarial settings, the vulnerability of AI models to bias throughout their pipeline, the high planetary cost of running large AI models and the emergence of exploitative surveillance capitalism-based economic logic built on AI technology. This study aims to document these harms of AI technology and study how these technologies and their developers and users can be made more accountable.
Design/methodology/approach
Due to the nature of the problem, a holistic, multi-pronged approach is required to understand and counter these potential harms. This paper identifies the rationale for urgently focusing on human-centered AI and provide an outlook of promising directions including technical proposals.
Findings
AI has the potential to benefit the entire society, but there remains an increased risk for vulnerable segments of society. This paper provides a general survey of the various approaches proposed in the literature to make AI technology more accountable. This paper reports that the development of ethical accountable AI design requires the confluence and collaboration of many fields (ethical, philosophical, legal, political and technical) and that lack of diversity is a problem plaguing the state of the art in AI.
Originality/value
This paper provides a timely synthesis of the various technosocial proposals in the literature spanning technical areas such as interpretable and explainable AI; algorithmic auditability; as well as policy-making challenges and efforts that can operationalize ethical AI and help in making AI accountable. This paper also identifies and shares promising future directions of research.
Subject
Computer Networks and Communications,Sociology and Political Science,Philosophy,Communication
Reference43 articles.
1. Big data for development: applications and techniques;Big Data Analytics,2016
2. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI;Information Fusion,2020
3. Explainable machine learning in deployment,2020
4. Gender shades: Intersectional accuracy disparities in commercial gender classification,2018
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献