UAV rendezvous based on Nash bargain

Author:

Jiang WanyueORCID,Wang Daobo,Wang Yin

Abstract

Purpose The purpose of this paper is to find a solution for the unmanned aerial vehicle (UAV) rendezvous problem, which should be feasible, optimal and not time consuming. In the existing literatures, the UAV rendezvous problem is always presented as a matter of simultaneous arrival. They focus only on the time consistency. However, the arrival time of UAVs can vary according to the rendezvous position. The authors should determine the best rendezvous position with considering UAVs’ maneuver constraint, so that UAVs can construct a formation in a short time. Design/methodology/approach The authors present a decentralized method in which UAVs negotiate with each other for the best rendezvous positions by using Nash bargain. The authors analyzed the constraints of the rendezvous time and the UAV maneuver, and proposed an objective function that allows UAVs to get to their rendezvous positions as fast as possible. Bezier curve is adopted to generate smooth and feasible flight trajectories. During the rendezvous process, UAVs adjust their speed so that they can arrive at the rendezvous positions simultaneously. Findings The effectiveness of the proposed method is verified by simulation experiments. The proposed method can successfully and efficiently solve the UAV rendezvous problem. Originality/value As far as the authors know, it is the first time Nash bargain is used in the UAV rendezvous problem. The authors modified the Nash bargain method and make it distributed, so that it can be computed easily. The proposed method is much less consuming than ordinary Nash bargain method and ordinary swarm intelligence based methods. It also considers the UAV maneuver constraint, and can be applied online for its fast calculation speed. Simulations demonstrate the effectiveness of the proposed method.

Publisher

Emerald

Subject

General Computer Science

Reference16 articles.

1. Path generation for rendezvous of dissimilar UAVs using Particle Swarm Optimization of Dubins curve sets,2016

2. Trajectory optimization for unmanned aerial vehicle formation reconfiguration;Engineering Optimization,2014

3. Consensus based on learning game theory with a UAV rendezvous application;Chinese Journal of Aeronautics,2014

4. The bargaining problem;Econometrica,1950

5. Variable deviated pursuit for rendezvous guidance;Journal of Guidance, Control, and Dynamics,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3