Improvement in head blast-protection via the use of polyurea-augmented advanced combat helmet

Author:

Grujicic Mica,Ramaswami S,Snipes Jennifer,Yavari Ramin,Dudt Philip

Abstract

Purpose – The purpose of this paper is to optimize the design of the advanced combat helmet (ACH) currently in use, by its designers in order to attain maximum protection against ballistic impacts (fragments, shrapnel, etc.) and hard-surface/head collisions. Since traumatic brain injury experienced by a significant fraction of the soldiers returning from the recent conflicts is associated with their exposure to blast, the ACH should be redesigned in order to provide the necessary level of protection against blast loads. In the present work, augmentations of the ACH for improved blast protections are considered. These augmentations include the use of a polyurea (a nano-segregated elastomeric copolymer)-based ACH external coating/internal lining. Design/methodology/approach – To demonstrate the efficacy of this approach, instrumented (unprotected, standard-ACH-protected, and augmented-ACH-protected) head-mannequin blast experiments are carried out. These experimental efforts are complemented with the appropriate combined Eulerian/Lagrangian transient non-linear dynamics computational fluid/solid interaction analysis. Findings – The results obtained indicated that: when the extent of peak over-pressure reduction is used as a measure of the blast-mitigation effectiveness, polyurea-based augmentations do not noticeably improve, and sometimes slightly worsen, the performance of the standard ACH; when the extent of specific impulse reduction is used as a measure of the blast-mitigation effectiveness, application of the polyurea external coating to the standard ACH improves the blast-mitigation effectiveness of the helmet, particularly at shorter values of the charge-detonation standoff distance (SOD). At longer SODs, the effects of the polyurea-based ACH augmentations on the blast-mitigation efficacy of the standard ACH are inconclusive; and the use of the standard ACH significantly lowers the accelerations experienced by the skull and the intracranial matter. As far as the polyurea-based augmentations are concerned, only the internal lining at shorter SODs appears to yield additional reductions in the head accelerations. Originality/value – To the authors’ knowledge, the present work contains the first report of a combined experimental/computational study addressing the problem of blast-mitigation by polyurea-based augmentation of ACH.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3