Enhancement of optical, mechanical and micro structural properties in nanocomposite films of PVA doped with WO3 nanoparticles

Author:

N.B. Rithin Kumar,Crasta Vincent,Praveen B M

Abstract

Purpose – The purpose of this paper is to explore the synthesis, preparation and investigation of micro structural, optical and mechanical studies of polyvinyl alcohol (PVA) doped with tungsten oxide (WO3) nanocomposites films. These films were prepared by simple solvent casting method is further characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-visible spectroscopy, universal testing machine (UTM), scanning electron microscope (SEM), energy-dispersive analysis of X-rays (EDAX) and atomic force microscope (AFM) techniques to determine the enhancement in structural, optical and mechanical properties with increase in dopant concentration. Design/methodology/approach – The present paper deals with the synthesis of WO3 nanoparticles using precipitation method and doping into PVA matrix to prepare a polymer nanocomposite film using coagulation and solvent casting method. The FTIR explores the interaction of dopants with PVA matrix. The XRD spectra investigate the variation of crystallinity. The UV/Vis-spectra reveals the information of optical energy band gap and the Urbach Energy for different doping concentrations. The mechanical properties of the nanocomposites were exposed using UTM. The phase homogeneity, film topography, chemical composition of nanocomposites is analyzed using SEM, EDAX and AFM techniques supporting the above results. Findings – The films characterized by FTIR spectroscopy explores the irregular shift in the bands of pure and doped PVA can be understood on the basis of intra/inter molecular hydrogen bonding with the adjacent OH group of PVA backbone. The XRD result reconnoiters that the particle size and crystallinity increases whereas microstructural strain and dislocation density decreases with increase in dopant concentration. Further the drastic decrease in optical energy band gap E g =0.94 eV for doping concentration x=15 wt% and the increase in values of Urbach Energy (E u ) with doping concentrations were investigated by UV/Vis spectra. Also the extinction coefficient was high in the wavelength range of 250-400 nm and low in the wavelength range of 400-1,200 nm. The mechanical studies indicates that the addition of the WO3 with weight percentage concentration x=15 percent increases the tensile strength and Young’s modulus. The phase homogeneity, the particle size of the dopants and chemical composition of nanocomposites is analyzed using SEM and EDAX. The film topography of the nanocomposites is analyzed using AFM techniques supporting the above results. Originality/value – The investigation of synthesis, preparation and investigation of micro structural, optical and mechanical studies of PVA doped with WO3 nanocomposites films as been done. The results prove that these nanocomposites having good mechanical strength with crystalline nature and also very low optical energy gap value that could find possible applications in industries.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3