Fatigue of adhesively bonded epoxy-AA6061T651 joints

Author:

Campos António A.M.A.,Jesus Abílio M.P. de,Correia José A.F.O.,Morais José J.L.

Abstract

Purpose Adhesively bonded joints are gaining importance in the structural joining processes competing against welding and bolting processes. However, long-term behaviour of adhesively bonded joints is still an open question. Due to the increasing interest in adhesively bonded joints, mainly in the transports industry, there is a need to deep the knowledge about the fatigue behaviour of adhesive joints with metallic substrates allowing the development of reliable joints to resist cyclic loadings. The paper aims to discuss these issues. Design/methodology/approach An experimental research aiming at characterizing the fatigue behaviour of adhesively bonded aluminium substrates is presented in this paper, covering both fatigue crack propagation and global S-N behaviours. Double cantilever beam (DCB), end notch flexure (ENF) and double lap joints (DLJ) specimens built using the AA6061T651 substrate and epoxy adhesive were used to evaluate the pure modes I and II fatigue crack propagation rates and the S-N fatigue behaviours. Findings DCB and ENF specimens allowed the formulation of pure modes I and II fatigue crack propagation laws including the propagation thresholds. DLJs showed higher static shear strength than recommended by the manufacturer for aluminium substrates, but fatigue resistance of the DLJs was lower than suggested by the manufacturer. The fatigue damage process in the DLJs was dominated by a fatigue crack initiation process. Originality/value A consistent fatigue research on adhesively bonded aluminium substrates is presented covering in the same study aspects of fatigue crack propagation and fatigue crack initiation. Data reduction schemes involving both numerical and analytical procedures were followed. Proposed work constitutes a rigorous basis for future fatigue prediction models developments.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference24 articles.

1. ASTM E647 (1996), “Standard method for measurement of fatigue crack growth. Rates”, Annual Book of ASTM Standards, Section 3, Vol. 03.01, ASTM International, West Conshohocken, PA.

2. The effect of mode ratio and bond interface on the fatigue behavior of a highly-toughened epoxy;Engineering Fracture Mechanics,2010

3. Fracture mechanics tests in adhesively bonded joints: a literature review;The Journal of Adhesion,2014

4. Constante, C.J. (2014), “Utilização de métodos óticos de correlação de imagem para a determinação da tenacidade à fratura de adesivos estruturais”, MSc thesis, Instituto Superior de Engenharia do Porto, Porto.

5. Investigating fatigue damage evolution in adhesively bonded structures using backface strain measurement;The Journal of Adhesion,2002

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3