Fast solution of reliability-based robust design optimization by reducing the evaluation number for the performance functions

Author:

Lai XiongmingORCID,Chen Yuxin,Zhang Yong,Wang Cheng

Abstract

PurposeThe paper proposed a fast procedure for solving the reliability-based robust design optimization (RBRDO) by modifying the RBRDO formulation and transforming it into a series of RBRDO subproblems. Then for each subproblem, the objective function, constraint function and reliability index are approximated using Taylor series expansion, and their approximate forms depend on the deterministic design vector rather than the random vector and the uncertain estimation in the inner loop of RBRDO can be avoided. In this way, it can greatly reduce the evaluation number of performance function. Lastly, the trust region method is used to manage the above sequential RBRDO subproblems for convergence.Design/methodology/approachAs is known, RBRDO is nested optimization, where the outer loop updates the design vector and the inner loop estimate the uncertainties. When solving the RBRDO, a large evaluation number of performance functions are needed. Aiming at this issue, the paper proposed a fast integrated procedure for solving the RBRDO by reducing the evaluation number for the performance functions. First, it transforms the original RBRDO problem into a series of RBRDO subproblems. In each subproblem, the objective function, constraint function and reliability index caused are approximated using simple explicit functions that solely depend on the deterministic design vector rather than the random vector. In this way, the need for extensive sampling simulation in the inner loop is greatly reduced. As a result, the evaluation number for performance functions is significantly reduced, leading to a substantial reduction in computation cost. The trust region method is then employed to handle the sequential RBRDO subproblems, ensuring convergence to the optimal solutions. Finally, the engineering test and the application are presented to illustrate the effectiveness and efficiency of the proposed methods.FindingsThe paper proposes a fast procedure of solving the RBRDO can greatly reduce the evaluation number of performance function within the RBRDO and the computation cost can be saved greatly, which makes it suitable for engineering applications.Originality/valueThe standard deviation of the original objective function of the RBRDO is replaced by the mean and the reliability index of the original objective function, which are further approximated by using Taylor series expansion and their approximate forms depend on the deterministic design vector rather than the random vector. Moreover, the constraint functions are also approximated by using Taylor series expansion. In this way, the uncertainty estimation of the performance functions (i.e. the mean of the objective function, the constraint functions) and the reliability index of the objective function are avoided within the inner loop of the RBRDO.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference41 articles.

1. Reliability-based robust design optimization with the reliability index approach applied to composite laminate structures;Composite Structures,2019

2. Dimensional reduction applied to the reliability-based robust design optimization of composite structures;Composite Structures,2021

3. A reliability-based multidisciplinary design optimization method with evidence theory and probability theory;International Journal of Reliability, Quality and Safety Engineering,2018

4. Global convergence of a class of trust region algorithms for optimization with simple bounds;SIAM Journal on Numerical Analysis,1988

5. Reliability-based robust design optimization of polymer nanocomposites to enhance percolated electrical conductivity considering correlated input variables using multivariate distributions;Polymer,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3